9951 explained code solutions for 126 technologies


python-pytorchHow can I use Python and PyTorch to implement natural language processing?


Python and PyTorch can be used to implement natural language processing (NLP) in various ways. Here is an example of using Python and PyTorch to build a recurrent neural network (RNN) for language modeling:

import torch
import torch.nn as nn

class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()

        self.hidden_size = hidden_size

        self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
        self.i2o = nn.Linear(input_size + hidden_size, output_size)
        self.softmax = nn.LogSoftmax(dim=1)

    def forward(self, input, hidden):
        combined = torch.cat((input, hidden), 1)
        hidden = self.i2h(combined)
        output = self.i2o(combined)
        output = self.softmax(output)
        return output, hidden

    def initHidden(self):
        return torch.zeros(1, self.hidden_size)

n_hidden = 128
rnn = RNN(n_letters, n_hidden, n_categories)

This code builds an RNN with an input size of n_letters, a hidden size of n_hidden, and an output size of n_categories. The forward function takes an input and a hidden state and returns an output and a new hidden state. The initHidden function initializes the hidden state to a zero vector.

The following parts are included in the code:

  1. import statements to import the necessary packages
  2. Definition of the RNN class
  3. Definition of the __init__ function to initialize the RNN
  4. Definition of the forward function to compute the output and the new hidden state
  5. Definition of the initHidden function to initialize the hidden state
  6. Instantiation of the RNN class with the appropriate parameters

Helpful links

Edit this code on GitHub