9951 explained code solutions for 126 technologies


python-pytorchHow do I use a PyTorch dataset in Python?


Using a PyTorch dataset in Python is easy. First, you need to import the PyTorch library and the dataset you want to use:

import torch
from torch.utils.data import Dataset

Next, you need to create a subclass of the Dataset class and override the __len__ and __getitem__ methods. For example, if you want to use the MNIST dataset:

class MNISTDataset(Dataset):
    def __init__(self, data_path):
        self.data_path = data_path

    def __len__(self):
        return len(self.data_path)

    def __getitem__(self, idx):
        return self.data_path[idx]

Then, you need to instantiate the dataset by calling the class with the path of the dataset:

mnist_dataset = MNISTDataset(data_path='path/to/mnist/dataset')

Finally, you can use the DataLoader class from PyTorch to load the dataset:

from torch.utils.data import DataLoader

mnist_loader = DataLoader(mnist_dataset, batch_size=32, shuffle=True)

The DataLoader class provides a number of useful features such as batching, shuffling, and loading the data in parallel.

Code explanation

  1. import torch: This imports the PyTorch library.
  2. from torch.utils.data import Dataset: This imports the Dataset class from PyTorch.
  3. class MNISTDataset(Dataset): This creates a subclass of the Dataset class for the MNIST dataset.
  4. def __init__(self, data_path): This initializes the MNISTDataset class with the path of the dataset.
  5. def __len__(self): This returns the length of the dataset.
  6. def __getitem__(self, idx): This returns the item at the specified index.
  7. mnist_dataset = MNISTDataset(data_path='path/to/mnist/dataset'): This instantiates the MNISTDataset class with the path of the dataset.
  8. from torch.utils.data import DataLoader: This imports the DataLoader class from PyTorch.
  9. mnist_loader = DataLoader(mnist_dataset, batch_size=32, shuffle=True): This creates a DataLoader instance for the MNISTDataset class with a batch size of 32 and shuffling enabled.

Helpful links

Edit this code on GitHub