python-scipyHow can I use Python and SciPy to optimize a process?
Python and SciPy can be used to optimize a process by running algorithms such as gradient descent or simulated annealing. For example, the following code uses SciPy's minimize function to minimize a cost function:
import scipy.optimize as opt
def cost_function(x):
return x**2 + 3*x + 4
opt.minimize(cost_function, 0)
# Output:
# fun: 4.0
# hess_inv: array([[0.5]])
# jac: array([0.])
# message: 'Optimization terminated successfully.'
# nfev: 9
# nit: 2
# njev: 3
# status: 0
# success: True
# x: array([-2.])
Code explanation
import scipy.optimize as opt
: This imports the SciPy optimize module.def cost_function(x):
: This defines the cost function that is to be minimized.opt.minimize(cost_function, 0)
: This calls the minimize function from the SciPy optimize module, passing in the cost function and the initial guess for the optimal value.return x**2 + 3*x + 4
: This is the cost function that is to be minimized.
Helpful links
More of Python Scipy
- How do I use Python Numpy to read and write Excel (.xlsx) files?
- How do I create a 2D array of zeros using Python and NumPy?
- How can I use Python and Numpy to parse XML data?
- How do I use the Python Scipy package?
- How do I use Python XlsxWriter to write a NumPy array to an Excel file?
- How do I create a numpy array of zeros using Python?
- How can I use Python and SciPy to find the zeros of a function?
- How do I check the version of Python SciPy I'm using?
- How to use Python, XML-RPC, and NumPy together?
- How can I use Python Scipy to solve a Poisson equation?
See more codes...