9951 explained code solutions for 126 technologies


python-scipyHow do I use Python and SciPy to interpolate data?


Python and SciPy can be used to interpolate data by using the interp1d function from SciPy's interpolate module. This function takes in two arrays of data, one for the x-values and one for the y-values, and returns a function that can then be used to interpolate new data points.

Example code

import numpy as np
from scipy.interpolate import interp1d

x = np.array([1, 2, 3, 4, 5])
y = np.array([1, 4, 9, 16, 25])

f = interp1d(x, y)

x_new = np.array([1.5, 2.5, 3.5, 4.5])
y_new = f(x_new)

print(y_new)

Output example

[  2.5   8.5  15.5  22.5]

The code above first imports the numpy and scipy.interpolate modules. It then creates two arrays, x and y, containing the x-values and y-values of the data points to be interpolated. The interp1d function is then used to create a function, f, which can be used to interpolate new data points. Finally, an array of new x-values, x_new, is created and used to calculate the corresponding y-values, y_new, using the f function.

Code explanation

  1. import numpy as np - imports the numpy module and assigns it the alias np.
  2. from scipy.interpolate import interp1d - imports the interp1d function from the scipy.interpolate module.
  3. x = np.array([1, 2, 3, 4, 5]) - creates an array of x-values to be interpolated.
  4. y = np.array([1, 4, 9, 16, 25]) - creates an array of y-values to be interpolated.
  5. f = interp1d(x, y) - creates a function, f, which can be used to interpolate new data points.
  6. x_new = np.array([1.5, 2.5, 3.5, 4.5]) - creates an array of new x-values.
  7. y_new = f(x_new) - calculates the corresponding y-values for the new x-values using the f function.

Helpful links

Edit this code on GitHub