python-scipyHow can I use Python and SciPy to solve a Newton's method problem?
To solve a Newton's method problem using Python and SciPy, you can use the scipy.optimize
module. This module offers an implementation of Newton's method, which can be used to find the roots of a given function. To use it, you must first define a function that returns the value of the function and its derivatives. For example:
def f(x):
return x**3 - 2*x - 5
Then, you can call the scipy.optimize.newton
function, passing in the function f
and an initial guess for the solution:
from scipy.optimize import newton
root = newton(f, 2)
print(root)
# Output: 2.094551481542327
Code explanation
def f(x):
: Define the functionf
with a single argumentx
.return x**3 - 2*x - 5
: Return the value of the function atx
.from scipy.optimize import newton
: Import thenewton
function from thescipy.optimize
module.root = newton(f, 2)
: Call thenewton
function, passing in the functionf
and an initial guess for the solution2
.print(root)
: Print the result of thenewton
function, which is the root of the functionf
.
Helpful links
More of Python Scipy
- How do I create a 2D array of zeros using Python and NumPy?
- How do I use Python XlsxWriter to write a NumPy array to an Excel file?
- How to use Python, XML-RPC, and NumPy together?
- How can I check if a certain version of Python is compatible with SciPy?
- How do I use the trapz function in Python SciPy?
- How can I use Scipy with Python?
- How do I use the Python Scipy package?
- How do I use Python Scipy to perform a Z test?
- How do I calculate variance using Python and SciPy?
- How can I use Python Numpy to select elements from an array based on multiple conditions?
See more codes...