python-scipyHow can I use Python and SciPy to solve a Newton's method problem?
To solve a Newton's method problem using Python and SciPy, you can use the scipy.optimize module. This module offers an implementation of Newton's method, which can be used to find the roots of a given function. To use it, you must first define a function that returns the value of the function and its derivatives. For example:
def f(x):
return x**3 - 2*x - 5
Then, you can call the scipy.optimize.newton function, passing in the function f and an initial guess for the solution:
from scipy.optimize import newton
root = newton(f, 2)
print(root)
# Output: 2.094551481542327
Code explanation
def f(x):: Define the functionfwith a single argumentx.return x**3 - 2*x - 5: Return the value of the function atx.from scipy.optimize import newton: Import thenewtonfunction from thescipy.optimizemodule.root = newton(f, 2): Call thenewtonfunction, passing in the functionfand an initial guess for the solution2.print(root): Print the result of thenewtonfunction, which is the root of the functionf.
Helpful links
More of Python Scipy
- How can I use Python and Numpy to zip files?
- How can I use Python and SciPy to find the zeros of a function?
- How do I use Scipy zeros in Python?
- How do I create a zero matrix using Python and Numpy?
- How do I use Python XlsxWriter to write a NumPy array to an Excel file?
- How do I use the trapz function in Python SciPy?
- How can I use Python Scipy to zoom in on an image?
- How can I use Python and Numpy to parse XML data?
- How do I use Python Numpy to read and write Excel (.xlsx) files?
- How can I check if a certain version of Python is compatible with SciPy?
See more codes...