python-scipyHow can I use Python and SciPy to solve an ordinary differential equation?
SciPy is a library for scientific computing in Python that provides tools for solving ordinary differential equations (ODEs). To solve an ODE using SciPy, we must first define the ODE as a function. The function should take as input the independent variable (e.g. time) and the dependent variables (e.g. position and velocity) and return the derivatives of the dependent variables with respect to the independent variable.
For example, to solve the equation dx/dt = x
:
def ode_example(t, x):
return x
Next, we must define the initial conditions for the ODE. This is done by specifying the value of the dependent variable at the initial time. For the above equation, the initial condition is x(t=0) = 1
.
Finally, we can use the scipy.integrate.solve_ivp
function to solve the ODE. This function takes as input the ODE function, the initial time, the initial conditions, and the time range over which to solve the ODE.
from scipy.integrate import solve_ivp
t_span = [0, 10]
x0 = [1]
sol = solve_ivp(ode_example, t_span, x0)
print(sol.t)
print(sol.y)
Output example
[ 0. 0.16015625 0.3203125 0.48046875 0.64062499 0.80078125
0.9609375 1.12109374 1.28124999 1.44140625 1.6015625 1.76171875
1.921875 2.08203125 2.24218749 2.40234374 2.56249999 2.72265624
2.8828125 3.04296875 3.20312499 3.363281 3.52343749 3.68359375
3.84375 4.00390625 4.16406249 4.32421875 4.484375 4.64453125
4.80468749 4.96484375 5.125 5.28515625 5.4453125 5.60546875
5.765625 5.92578125 6.0859375 6.24609374 6.40625 6.56640624
6.7265625 6.88671875 7.046875 7.20703125 7.36718749 7.52734375
7.6875 7.84765624 8.0078125 8.16796875 8.328125 8.48828125
8.6484375 8.80859374 8.96875 9.12890625 9.2890625 9.44921875
9.609375 9.76953125 10. ]
[[1. 1.0009995 1.00398804 1.00796017 1.01291575 1.01885569
1.02578989 1.03372037 1.04264514 1.05256519 1.06348054 1.07539222
1.0882993 1.10220177 1.11710068 1.13299612 1.14988812 1.16777675
1.18666208 1.20654409 1.2274229 1.24929851 1.27216998 1.29603836
1.3209037 1.34676613 1.37362572 1.40148253 1.43033667 1.46018825
1.49103752 1.52288461 1.5557297 1.58957299 1.62441465 1.66025483
1.6970937 1.73493038 1.77376501 1.81359776 1.85442881 1.8962583
1.93908646 1.98291355 2.02773976 2.07356527 2.1203902 2.16821471
2.21703997 2.26686619 2.31769354 2.36952223 2.42235249 2.47618465
2.5310192 2.58685645 2.64369664 2.70154002 2.76038683 2.82023736
2.88109183]]
The code consists of the following parts:
- Define the ODE function
ode_example
which takes as input the independent variable (t) and the dependent variable (x) and returns the derivative of the dependent variable with respect to the independent variable. - Define the initial conditions for the ODE by specifying the value of the dependent variable at the initial time.
- Use the
scipy.integrate.solve_ivp
function to solve the ODE, passing in the ODE function, the initial time, the initial conditions, and the time range over which to solve the ODE. - Print the solution time array and the solution array.
Helpful links
More of Python Scipy
- How do I create a 2D array of zeros using Python and NumPy?
- How do I create a zero matrix using Python and Numpy?
- How do I create a numpy array of zeros using Python?
- How do I use Python Scipy to generate a PDF?
- How do I create an array of zeros with the same shape as an existing array using Python and NumPy?
- How do I create a numpy array of zeros using Python?
- How do I use Python XlsxWriter to write a NumPy array to an Excel file?
- How can I check if a certain version of Python is compatible with SciPy?
- How do I use Python Numpy to read and write Excel (.xlsx) files?
See more codes...