python-scipyHow can I use Python Scipy to generate a Bernoulli distribution?
Using the Python Scipy library, you can generate a Bernoulli distribution by using the scipy.stats.bernoulli
function. This function takes two parameters, the probability of success and size. The probability of success is the probability of a trial resulting in a success, and size is the number of trials.
import scipy.stats as stats
# Generate a Bernoulli distribution with p=0.3
bernoulli_dist = stats.bernoulli(0.3, size=100)
# Print the first 10 values of the distribution
print(bernoulli_dist.rvs(10))
# Output
array([0, 1, 0, 0, 0, 0, 0, 0, 0, 0])
The code above will generate a Bernoulli distribution with a probability of success p=0.3
and a size of 100
trials. The stats.bernoulli
function will return a frozen Bernoulli distribution object, which can then be used to generate random numbers with the rvs
method. In this example, the rvs
method is used to print the first 10 values of the distribution.
The parts of the code are as follows:
import scipy.stats as stats
imports the Scipy stats module.stats.bernoulli(0.3, size=100)
creates a Bernoulli distribution with a probability of successp=0.3
and a size of100
trials.bernoulli_dist.rvs(10)
generates 10 random numbers from the Bernoulli distribution.
Helpful links
More of Python Scipy
- How can I use Python Scipy to zoom in on an image?
- How do I create a zero matrix using Python and Numpy?
- How do I use Python and SciPy to write a WAV file?
- How can I check if a certain version of Python is compatible with SciPy?
- How do I use Python Numpy to read and write Excel (.xlsx) files?
- How do I create a 2D array of zeros using Python and NumPy?
- How can I use Python and Numpy to zip files?
- How do I use Python Scipy to perform a Z test?
- How can I use Python Scipy to perform a wavelet transform?
- How do I install Python-Scipy on Ubuntu?
See more codes...