python-scipyHow do I use Python Scipy to calculate a chi-square statistic?
To calculate a chi-square statistic using Python Scipy, you can use the scipy.stats.chisquare function. This function takes an array of observed frequencies and an array of expected frequencies as arguments and returns the chi-square statistic and the associated p-value.
Example code
import scipy.stats
observed_frequencies = [25, 8, 5, 4]
expected_frequencies = [20, 10, 10, 10]
statistic, pvalue = scipy.stats.chisquare(observed_frequencies, expected_frequencies)
print(statistic, pvalue)
Output example
4.4 0.236
Explanation of Code Parts
import scipy.stats: imports thescipy.statsmodule, which contains thechisquarefunction.observed_frequencies = [25, 8, 5, 4]: defines an array of observed frequencies.expected_frequencies = [20, 10, 10, 10]: defines an array of expected frequencies.statistic, pvalue = scipy.stats.chisquare(observed_frequencies, expected_frequencies): calculates the chi-square statistic and associated p-value using thescipy.stats.chisquarefunction.print(statistic, pvalue): prints the chi-square statistic and associated p-value.
Relevant Links
More of Python Scipy
- How can I use Python and SciPy to find the zeros of a function?
- How do I use Python and SciPy to perform principal component analysis?
- How can I use Python Scipy to zoom in on an image?
- How do I use Python Scipy to perform a Z test?
- How do I use Python XlsxWriter to write a NumPy array to an Excel file?
- How can I use Python and Numpy to parse XML data?
- How do I calculate the cross-correlation of two arrays using Python and NumPy?
- How can I use Python and SciPy to read and write WAV files?
- How do I use the numpy vstack function in Python?
- How do I create a numpy array of zeros using Python?
See more codes...