python-scipyHow do I use Python Scipy to calculate a chi-square statistic?
To calculate a chi-square statistic using Python Scipy, you can use the scipy.stats.chisquare function. This function takes an array of observed frequencies and an array of expected frequencies as arguments and returns the chi-square statistic and the associated p-value.
Example code
import scipy.stats
observed_frequencies = [25, 8, 5, 4]
expected_frequencies = [20, 10, 10, 10]
statistic, pvalue = scipy.stats.chisquare(observed_frequencies, expected_frequencies)
print(statistic, pvalue)
Output example
4.4 0.236
Explanation of Code Parts
import scipy.stats: imports thescipy.statsmodule, which contains thechisquarefunction.observed_frequencies = [25, 8, 5, 4]: defines an array of observed frequencies.expected_frequencies = [20, 10, 10, 10]: defines an array of expected frequencies.statistic, pvalue = scipy.stats.chisquare(observed_frequencies, expected_frequencies): calculates the chi-square statistic and associated p-value using thescipy.stats.chisquarefunction.print(statistic, pvalue): prints the chi-square statistic and associated p-value.
Relevant Links
More of Python Scipy
- How do I create a 2D array of zeros using Python and NumPy?
- How can I check if a certain version of Python is compatible with SciPy?
- How do I uninstall Python Scipy?
- How do I use Scipy zeros in Python?
- How can I use Python Scipy to zoom in on an image?
- How do I calculate the cross-correlation of two arrays using Python and NumPy?
- How do I use Python XlsxWriter to write a NumPy array to an Excel file?
- How do I use Python Numpy to read and write Excel (.xlsx) files?
- How do I use the numpy vstack function in Python?
- How do I check the version of Python Numpy I am using?
See more codes...