python-scipyHow do I use Python Scipy to calculate a chi-square statistic?
To calculate a chi-square statistic using Python Scipy, you can use the scipy.stats.chisquare
function. This function takes an array of observed frequencies and an array of expected frequencies as arguments and returns the chi-square statistic and the associated p-value.
Example code
import scipy.stats
observed_frequencies = [25, 8, 5, 4]
expected_frequencies = [20, 10, 10, 10]
statistic, pvalue = scipy.stats.chisquare(observed_frequencies, expected_frequencies)
print(statistic, pvalue)
Output example
4.4 0.236
Explanation of Code Parts
import scipy.stats
: imports thescipy.stats
module, which contains thechisquare
function.observed_frequencies = [25, 8, 5, 4]
: defines an array of observed frequencies.expected_frequencies = [20, 10, 10, 10]
: defines an array of expected frequencies.statistic, pvalue = scipy.stats.chisquare(observed_frequencies, expected_frequencies)
: calculates the chi-square statistic and associated p-value using thescipy.stats.chisquare
function.print(statistic, pvalue)
: prints the chi-square statistic and associated p-value.
Relevant Links
More of Python Scipy
- How can I check if a certain version of Python is compatible with SciPy?
- How do I create a 2D array of zeros using Python and NumPy?
- How do I create a zero matrix using Python and Numpy?
- How do I use Scipy zeros in Python?
- How do I use Python and SciPy to write a WAV file?
- How can I use Python and SciPy to read and write WAV files?
- How do I use Python XlsxWriter to write a NumPy array to an Excel file?
- How can I use Python and SciPy to find the zeros of a function?
- How can I use Python Scipy to zoom in on an image?
- How can I use Python and Numpy to parse XML data?
See more codes...