python-scipyHow do I use Python Scipy to calculate a chi-square statistic?
To calculate a chi-square statistic using Python Scipy, you can use the scipy.stats.chisquare
function. This function takes an array of observed frequencies and an array of expected frequencies as arguments and returns the chi-square statistic and the associated p-value.
Example code
import scipy.stats
observed_frequencies = [25, 8, 5, 4]
expected_frequencies = [20, 10, 10, 10]
statistic, pvalue = scipy.stats.chisquare(observed_frequencies, expected_frequencies)
print(statistic, pvalue)
Output example
4.4 0.236
Explanation of Code Parts
import scipy.stats
: imports thescipy.stats
module, which contains thechisquare
function.observed_frequencies = [25, 8, 5, 4]
: defines an array of observed frequencies.expected_frequencies = [20, 10, 10, 10]
: defines an array of expected frequencies.statistic, pvalue = scipy.stats.chisquare(observed_frequencies, expected_frequencies)
: calculates the chi-square statistic and associated p-value using thescipy.stats.chisquare
function.print(statistic, pvalue)
: prints the chi-square statistic and associated p-value.
Relevant Links
More of Python Scipy
- How can I use Python Scipy to perform a wavelet transform?
- How do I create a numpy array of zeros using Python?
- How can I check if a certain version of Python is compatible with SciPy?
- How do I use Python Numpy to read and write Excel (.xlsx) files?
- How do I use Python and SciPy to create a tutorial PDF?
- How do I use the NumPy transpose function in Python?
- How do I use the scipy ttest_ind function in Python?
- How do I use Python Numpy to create a tutorial?
- How do I convert a Python numpy.ndarray to a list?
- How do I calculate the cross-correlation of two arrays using Python and NumPy?
See more codes...