python-tensorflowHow do I implement a regression example with Python and TensorFlow?
To implement a regression example with Python and TensorFlow, the following steps can be taken:
- Install TensorFlow:
pip install tensorflow
- Import the TensorFlow library:
import tensorflow as tf
- Create the feature columns and assign them to a variable:
feature_columns = [tf.feature_column.numeric_column('x', shape=[1])]
- Create the estimator model:
estimator = tf.estimator.LinearRegressor(feature_columns=feature_columns)
- Create the input data:
x_train = np.array([1., 2., 3., 4.])
y_train = np.array([0., -1., -2., -3.])
- Create the input function:
input_fn = tf.estimator.inputs.numpy_input_fn(
{'x':x_train}, y_train, batch_size=4, num_epochs=None, shuffle=True)
- Train the model:
estimator.train(input_fn=input_fn, steps=1000)
The output of the code will be the trained model.
Helpful links
More of Python Tensorflow
- How can I use TensorFlow Lite with XNNPACK in Python?
- How can I use Python TensorFlow in W3Schools?
- How do I check the version of Python Tensorflow I'm using?
- How can I check the compatibility of different versions of Python and TensorFlow?
- How do I resolve a SymbolAlreadyExposedError when the symbol "zeros" is already exposed as () in TensorFlow Python util tf_export?
- How can I convert a Tensor object to a list in Python using TensorFlow?
- How can I use Tensorflow 1.x with Python 3.8?
- How do I show the version of Python TensorFlow I am using?
- How do I use Python and TensorFlow Placeholders?
- How can I use Python and TensorFlow together?
See more codes...