9951 explained code solutions for 126 technologies


python-tensorflowHow do I implement a regression example with Python and TensorFlow?


To implement a regression example with Python and TensorFlow, the following steps can be taken:

  1. Install TensorFlow: pip install tensorflow
  2. Import the TensorFlow library: import tensorflow as tf
  3. Create the feature columns and assign them to a variable:
feature_columns = [tf.feature_column.numeric_column('x', shape=[1])]
  1. Create the estimator model:
estimator = tf.estimator.LinearRegressor(feature_columns=feature_columns)
  1. Create the input data:
x_train = np.array([1., 2., 3., 4.])
y_train = np.array([0., -1., -2., -3.])
  1. Create the input function:
input_fn = tf.estimator.inputs.numpy_input_fn(
    {'x':x_train}, y_train, batch_size=4, num_epochs=None, shuffle=True)
  1. Train the model:
estimator.train(input_fn=input_fn, steps=1000)

The output of the code will be the trained model.

Helpful links

Edit this code on GitHub