tesseract-ocrHow can I benchmark the performance of Tesseract OCR?
Benchmarking the performance of Tesseract OCR can be done by running tests on a set of images and comparing the results. Here is an example of how to benchmark Tesseract OCR using Python:
# Import the pytesseract library
import pytesseract
# Get the path to the image
image_path = "sample.jpg"
# Read the image using pytesseract
text = pytesseract.image_to_string(image_path)
# Print the text
print(text)
The output of this code is the text extracted from the image. To benchmark the performance of Tesseract OCR, you would need to do the following:
- Select a set of images to test on.
- Run the code on each image and record the output.
- Compare the output to the expected result to measure accuracy.
Helpful links
More of Tesseract Ocr
- How do I use Tesseract OCR to extract text from a ZIP file?
- How do I install and use language packs with Tesseract OCR?
- How to install and use Tesseract OCR on Ubuntu 22.04?
- How do I add a language to Tesseract OCR on Windows?
- How can I use the Tesseract OCR library in a Rust project?
- How can I use Tesseract OCR to recognize Russian text?
- How do I use tesseract-ocr with yocto?
- How do I use tesseract OCR to recognize different language codes?
- How can I use tesseract OCR to scale my images?
- How can I use Tesseract OCR with Python on Windows?
See more codes...