python-kerasHow can I calculate the F1 score using Python and Keras?
The F1 score is a metric used to measure the accuracy of a model. It is the harmonic mean of precision and recall. In Python and Keras, the F1 score can be calculated using the Keras backend functions precision()
and recall()
.
Example code
from keras import backend as K
y_true = K.variable([[0, 1, 0], [0, 0, 1]])
y_pred = K.variable([[0, 0, 1], [0, 0, 1]])
def f1_score(y_true, y_pred):
precision = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) / (K.sum(K.round(K.clip(y_pred, 0, 1))) + K.epsilon())
recall = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) / (K.sum(K.round(K.clip(y_true, 0, 1))) + K.epsilon())
return 2 * ((precision * recall) / (precision + recall + K.epsilon()))
f1_score = f1_score(y_true, y_pred)
Output example
0.6666666865348816
The code above calculates the F1 score using the Keras backend functions precision()
and recall()
. First, two variables y_true
and y_pred
are created to store the true labels and predicted labels, respectively. Then, a function f1_score()
is defined to calculate the F1 score using the precision and recall values. The precision and recall values are calculated using the Keras backend functions precision()
and recall()
, and the F1 score is calculated using the formula for harmonic mean. Finally, the F1 score is calculated by calling the f1_score()
function.
Parts of Code:
- y_true = K.variable([[0, 1, 0], [0, 0, 1]]): This creates a variable
y_true
to store the true labels. - y_pred = K.variable([[0, 0, 1], [0, 0, 1]]): This creates a variable
y_pred
to store the predicted labels. - precision = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) / (K.sum(K.round(K.clip(y_pred, 0, 1))) + K.epsilon()): This calculates the precision value using the Keras backend function
precision()
. - recall = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) / (K.sum(K.round(K.clip(y_true, 0, 1))) + K.epsilon()): This calculates the recall value using the Keras backend function
recall()
. - return 2 ((precision recall) / (precision + recall + K.epsilon())): This calculates the F1 score using the formula for harmonic mean.
- f1_score = f1_score(y_true, y_pred): This calls the
f1_score()
function to calculate the F1 score.
Helpful links
More of Python Keras
- How do I use validation_data when creating a Keras model in Python?
- How do I use Python Keras to zip a file?
- How can I use XGBoost, Python and Keras together to build a machine learning model?
- How do I use Python Keras to create a Zoom application?
- How do I check which version of Keras I am using in Python?
- How can I enable verbose mode when using Python Keras?
- How do I use the to_categorical function from TensorFlow in Python to convert data into a format suitable for a neural network?
- What is Python Keras and how is it used?
- How do I use Python's tf.keras.utils.get_file to retrieve a file?
- How do I check if my GPU is being used with Python Keras?
See more codes...