python-kerasHow can I calculate the F1 score using Python and Keras?
The F1 score is a metric used to measure the accuracy of a model. It is the harmonic mean of precision and recall. In Python and Keras, the F1 score can be calculated using the Keras backend functions precision() and recall().
Example code
from keras import backend as K
y_true = K.variable([[0, 1, 0], [0, 0, 1]])
y_pred = K.variable([[0, 0, 1], [0, 0, 1]])
def f1_score(y_true, y_pred):
precision = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) / (K.sum(K.round(K.clip(y_pred, 0, 1))) + K.epsilon())
recall = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) / (K.sum(K.round(K.clip(y_true, 0, 1))) + K.epsilon())
return 2 * ((precision * recall) / (precision + recall + K.epsilon()))
f1_score = f1_score(y_true, y_pred)
Output example
0.6666666865348816
The code above calculates the F1 score using the Keras backend functions precision() and recall(). First, two variables y_true and y_pred are created to store the true labels and predicted labels, respectively. Then, a function f1_score() is defined to calculate the F1 score using the precision and recall values. The precision and recall values are calculated using the Keras backend functions precision() and recall(), and the F1 score is calculated using the formula for harmonic mean. Finally, the F1 score is calculated by calling the f1_score() function.
Parts of Code:
- y_true = K.variable([[0, 1, 0], [0, 0, 1]]): This creates a variable
y_trueto store the true labels. - y_pred = K.variable([[0, 0, 1], [0, 0, 1]]): This creates a variable
y_predto store the predicted labels. - precision = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) / (K.sum(K.round(K.clip(y_pred, 0, 1))) + K.epsilon()): This calculates the precision value using the Keras backend function
precision(). - recall = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) / (K.sum(K.round(K.clip(y_true, 0, 1))) + K.epsilon()): This calculates the recall value using the Keras backend function
recall(). - return 2 ((precision recall) / (precision + recall + K.epsilon())): This calculates the F1 score using the formula for harmonic mean.
- f1_score = f1_score(y_true, y_pred): This calls the
f1_score()function to calculate the F1 score.
Helpful links
More of Python Keras
- How do I use Python Keras to zip a file?
- How can I use Python with Keras to build a deep learning model?
- How do I install the Python Keras .whl file?
- How do I use Python and Keras to resize an image?
- How can I enable verbose mode when using Python Keras?
- How do I use zero padding in Python Keras?
- How can I use Python Keras to create a neural network with zero hidden layers?
- How can I use XGBoost, Python and Keras together to build a machine learning model?
- How do I use Python Keras to create a Zoom application?
- How can I use word2vec and Keras to develop a machine learning model in Python?
See more codes...