python-kerasHow can I use Python, Keras, and TensorFlow together to build a machine learning model?
Using Python, Keras, and TensorFlow together to build a machine learning model is a straightforward process. First, you need to import the necessary libraries like import tensorflow as tf and import keras to use the functions they provide. Then, you need to define the model's architecture using Keras' Sequential class. Once the architecture is defined, you can compile the model using a suitable optimizer and loss function, such as tf.keras.optimizers.Adam(learning_rate=0.001) and tf.keras.losses.MeanSquaredError(). Finally, you can train the model using model.fit() and evaluate it using model.evaluate().
Example code
import tensorflow as tf
import keras
model = keras.Sequential([
keras.layers.Dense(units=64, activation='relu', input_shape=(32,)),
keras.layers.Dense(units=1)
])
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
loss=tf.keras.losses.MeanSquaredError())
model.fit(x_train, y_train, batch_size=32, epochs=100)
model.evaluate(x_test, y_test, batch_size=32)
Helpful links
More of Python Keras
- How do I check if my GPU is being used with Python Keras?
- How do I use Python Keras to zip a file?
- How do I get the version of Keras I am using in Python?
- How do I install the Python Keras .whl file?
- How do I use TensorFlow, Python, Keras, and utils to_categorical?
- How do I uninstall Keras from my Python environment?
- How do I use validation_data when creating a Keras model in Python?
- How can I use word2vec and Keras to develop a machine learning model in Python?
- How do I save weights in a Python Keras model?
- How do I use Python and Keras to train a model?
See more codes...