python-kerasHow can I use Python, Keras, and TensorFlow together to build a machine learning model?
Using Python, Keras, and TensorFlow together to build a machine learning model is a straightforward process. First, you need to import the necessary libraries like import tensorflow as tf
and import keras
to use the functions they provide. Then, you need to define the model's architecture using Keras' Sequential
class. Once the architecture is defined, you can compile the model using a suitable optimizer and loss function, such as tf.keras.optimizers.Adam(learning_rate=0.001)
and tf.keras.losses.MeanSquaredError()
. Finally, you can train the model using model.fit()
and evaluate it using model.evaluate()
.
Example code
import tensorflow as tf
import keras
model = keras.Sequential([
keras.layers.Dense(units=64, activation='relu', input_shape=(32,)),
keras.layers.Dense(units=1)
])
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
loss=tf.keras.losses.MeanSquaredError())
model.fit(x_train, y_train, batch_size=32, epochs=100)
model.evaluate(x_test, y_test, batch_size=32)
Helpful links
More of Python Keras
- How do I use Python and Keras to create a tutorial?
- How do I use Python Keras to perform a train-test split?
- How can I use Python Keras to develop a reinforcement learning model?
- How do I use Python Keras to zip a file?
- How do I check which version of Keras I am using in Python?
- How do I install the Python Keras .whl file?
- How can I enable verbose mode when using Python Keras?
- How do I save weights in a Python Keras model?
- How do I use validation_data when creating a Keras model in Python?
- How do I choose between Python Keras and Scikit Learn for machine learning?
See more codes...