python-kerasHow can I use Python and Keras to build a convolutional neural network?
To build a convolutional neural network (CNN) with Python and Keras, you need to follow a few steps:
- Import the necessary libraries:
import keras
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
- Create the model:
model = keras.models.Sequential()
- Add convolutional layers:
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(64, 64, 3)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
- Add flattening layer:
model.add(Flatten())
- Add a fully connected layer:
model.add(Dense(128, activation='relu'))
- Add output layer:
model.add(Dense(1, activation='sigmoid'))
- Compile the model:
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
For further information, please refer to the following links:
More of Python Keras
- How do I use Python and Keras to create a tutorial?
- How do I use Python Keras to perform a train-test split?
- How can I use Python Keras to develop a reinforcement learning model?
- How do I use Python Keras to zip a file?
- How do I check which version of Keras I am using in Python?
- How do I install the Python Keras .whl file?
- How can I enable verbose mode when using Python Keras?
- How do I save weights in a Python Keras model?
- How do I use validation_data when creating a Keras model in Python?
- How do I choose between Python Keras and Scikit Learn for machine learning?
See more codes...