python-kerasHow can I use Python and Keras to create an Optical Character Recognition (OCR) example?
This example will demonstrate how to use Python and Keras to create an Optical Character Recognition (OCR) example.
First, we need to import the necessary libraries and packages. This includes Keras
, Numpy
, and Matplotlib
.
import keras
import numpy as np
import matplotlib.pyplot as plt
Next, we need to create a function to load the MNIST dataset. This dataset consists of handwritten digits and is commonly used for testing OCR applications.
def load_data():
from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
return (x_train, y_train), (x_test, y_test)
Then, we need to create a model for our OCR application. We can use a convolutional neural network (CNN) for this purpose. The CNN will consist of two convolutional layers, a max pooling layer, and a fully connected layer.
def create_model():
model = keras.Sequential()
model.add(keras.layers.Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=(28, 28, 1)))
model.add(keras.layers.Conv2D(64, (3, 3), activation='relu'))
model.add(keras.layers.MaxPooling2D(pool_size=(2, 2)))
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(128, activation='relu'))
model.add(keras.layers.Dense(10, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adam(),
metrics=['accuracy'])
return model
Finally, we can train our model on the MNIST dataset and use it to make predictions.
# Load the data
(x_train, y_train), (x_test, y_test) = load_data()
# Reshape data
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
# Create model
model = create_model()
# Train model
model.fit(x_train, y_train,
batch_size=128,
epochs=10,
verbose=1,
validation_data=(x_test, y_test))
# Evaluate model
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Output example
Test loss: 0.0329
Test accuracy: 0.9907
The code consists of the following parts:
- Importing the necessary libraries and packages (
Keras
,Numpy
, andMatplotlib
). - Creating a function to load the MNIST dataset.
- Creating a model for our OCR application (a CNN consisting of two convolutional layers, a max pooling layer, and a fully connected layer).
- Training the model on the MNIST dataset and using it to make predictions.
Helpful links
More of Python Keras
- How can I use batch normalization in Python Keras?
- How do I use zero padding in Python Keras?
- How do I use Python Keras to zip a file?
- How do I use validation_data when creating a Keras model in Python?
- How do I use Python's tf.keras.utils.get_file to retrieve a file?
- How do I use Python and Keras to create a tutorial?
- How do I use Python and Keras to resize an image?
- How do I check if my GPU is being used with Python Keras?
- How do I use Python and Keras to perform binary classification?
- How do I create a Python Keras neural network tutorial?
See more codes...