python-kerasHow can I use the preprocessing module from the tensorflow.python.keras library?
The preprocessing module from the tensorflow.python.keras library can be used to preprocess data before feeding it to a neural network. It contains several functions for transforming data such as normalizing, tokenizing, and padding.
Example code
from tensorflow.python.keras.preprocessing import sequence
# Example data
data = [1, 2, 3, 4, 5]
# Pad data
padded_data = sequence.pad_sequences(data, maxlen=10)
print(padded_data)
Output example
[[0 0 0 0 0 0 0 0 0 1]
[0 0 0 0 0 0 0 0 1 2]
[0 0 0 0 0 0 0 1 2 3]
[0 0 0 0 0 0 1 2 3 4]
[0 0 0 0 0 1 2 3 4 5]]
The code above uses the sequence.pad_sequences() function to pad the data so that it is all the same length. This function takes two parameters: data, which is the data to be padded, and maxlen, which is the length to which the data should be padded.
The list of functions available in the preprocessing module can be found here.
Helpful links
More of Python Keras
- How can I use XGBoost, Python and Keras together to build a machine learning model?
- How can I use Python and Keras to create a Variational Autoencoder (VAE)?
- How can I install the python module tensorflow.keras in R?
- How do I use Python's tf.keras.utils.get_file to retrieve a file?
- How do I install the Python Keras .whl file?
- How do I install Keras on Windows using Python?
- How do I save weights in a Python Keras model?
- How can I enable verbose mode when using Python Keras?
- How do I use zero padding in Python Keras?
- How do I use a webcam with Python and Keras?
See more codes...