python-kerasHow do I create a custom loss function in Python with Keras?
Creating a custom loss function in Python with Keras is fairly straightforward.
Below is an example of a custom loss function written in Python with Keras:
def custom_loss(y_true, y_pred):
return K.mean(K.square(y_true - y_pred))
This custom loss function calculates the mean of the squared difference between the true values and the predicted values.
Code explanation
-
def custom_loss(y_true, y_pred):This defines the custom loss function ascustom_lossand takes two arguments,y_trueandy_pred, which represent the true and predicted values respectively. -
return K.mean(K.square(y_true - y_pred))This is the body of the custom loss function and returns the mean of the squared difference between the true and predicted values.
Helpful links
More of Python Keras
- How do I use zero padding in Python Keras?
- How can I resolve the issue of Python module Tensorflow.keras not being found?
- How do I save weights in a Python Keras model?
- How do I install the Python Keras .whl file?
- How do I install Keras on Windows using Python?
- How do I use Python's tf.keras.utils.get_file to retrieve a file?
- How do I use a webcam with Python and Keras?
- How can I use Python with Keras to build a deep learning model?
- How can I improve the validation accuracy of my Keras model using Python?
- How can I use Python and Keras to create a Variational Autoencoder (VAE)?
See more codes...