python-kerasHow do I create a dense layer in Python using Keras?
In order to create a dense layer in Python using Keras, the following steps must be taken:
- Import the necessary libraries. This includes
keras
,tensorflow
, andnumpy
:
import keras
import tensorflow as tf
import numpy as np
- Create a
Sequential
model:
model = keras.Sequential()
- Add a
Dense
layer to the model. This layer will have 10 nodes and will use therelu
activation function:
model.add(keras.layers.Dense(10, activation='relu'))
- Compile the model using the
Adam
optimizer andmean_squared_error
as the loss function:
model.compile(optimizer='Adam', loss='mean_squared_error')
- Train the model using a
numpy
array of data:
model.fit(x_train, y_train)
- Make predictions using a
numpy
array of data:
predictions = model.predict(x_test)
- Evaluate the model using a
numpy
array of data:
model.evaluate(x_test, y_test)
Helpful links
More of Python Keras
- How do I use Python Keras to create a Zoom application?
- How do I use Python Keras to zip a file?
- How do I save weights in a Python Keras model?
- How can I enable verbose mode when using Python Keras?
- How can I use word2vec and Keras to develop a machine learning model in Python?
- How can I use Python with Keras to build a deep learning model?
- How can I use Python Keras to develop a reinforcement learning model?
- How can I resolve the issue of Python module Tensorflow.keras not being found?
- How do I install the Python Keras .whl file?
- How can I use batch normalization in Python Keras?
See more codes...