9951 explained code solutions for 126 technologies


python-kerasHow do I create a dense layer in Python using Keras?


In order to create a dense layer in Python using Keras, the following steps must be taken:

  1. Import the necessary libraries. This includes keras, tensorflow, and numpy:
import keras
import tensorflow as tf
import numpy as np
  1. Create a Sequential model:
model = keras.Sequential()
  1. Add a Dense layer to the model. This layer will have 10 nodes and will use the relu activation function:
model.add(keras.layers.Dense(10, activation='relu'))
  1. Compile the model using the Adam optimizer and mean_squared_error as the loss function:
model.compile(optimizer='Adam', loss='mean_squared_error')
  1. Train the model using a numpy array of data:
model.fit(x_train, y_train)
  1. Make predictions using a numpy array of data:
predictions = model.predict(x_test)
  1. Evaluate the model using a numpy array of data:
model.evaluate(x_test, y_test)

Helpful links

  1. Keras Documentation
  2. TensorFlow Documentation

Edit this code on GitHub