python-kerasHow do I create a dense layer in Python using Keras?
In order to create a dense layer in Python using Keras, the following steps must be taken:
- Import the necessary libraries. This includes
keras,tensorflow, andnumpy:
import keras
import tensorflow as tf
import numpy as np
- Create a
Sequentialmodel:
model = keras.Sequential()
- Add a
Denselayer to the model. This layer will have 10 nodes and will use thereluactivation function:
model.add(keras.layers.Dense(10, activation='relu'))
- Compile the model using the
Adamoptimizer andmean_squared_erroras the loss function:
model.compile(optimizer='Adam', loss='mean_squared_error')
- Train the model using a
numpyarray of data:
model.fit(x_train, y_train)
- Make predictions using a
numpyarray of data:
predictions = model.predict(x_test)
- Evaluate the model using a
numpyarray of data:
model.evaluate(x_test, y_test)
Helpful links
More of Python Keras
- How do I use Python Keras to zip a file?
- How do I use Python's tf.keras.utils.get_file to retrieve a file?
- How do I save weights in a Python Keras model?
- How do I use Python Keras to perform a train-test split?
- How do I install the Python Keras .whl file?
- How can I improve the validation accuracy of my Keras model using Python?
- How do I use validation_data when creating a Keras model in Python?
- How can I enable verbose mode when using Python Keras?
- How do I choose between Python Keras and Scikit Learn for machine learning?
- How do I use Python and Keras to create a VGG16 model?
See more codes...