python-kerasHow do I create a Python Keras model?
Creating a Keras model in Python is a straightforward process. First, import the necessary libraries:
import keras
from keras.models import Sequential
from keras.layers import Dense
Then, define the model architecture:
model = Sequential()
model.add(Dense(units=64, activation='relu', input_dim=100))
model.add(Dense(units=10, activation='softmax'))
The first layer has 64 nodes, a ReLU activation, and takes input of dimension 100. The second layer has 10 nodes and a Softmax activation.
Next, compile the model:
model.compile(loss='categorical_crossentropy',
optimizer='sgd',
metrics=['accuracy'])
This specifies the loss function, optimizer, and metrics for the model.
Finally, train the model:
model.fit(x_train, y_train, epochs=5, batch_size=32)
This trains the model on the training data for 5 epochs with a batch size of 32.
The complete code should look something like this:
import keras
from keras.models import Sequential
from keras.layers import Dense
model = Sequential()
model.add(Dense(units=64, activation='relu', input_dim=100))
model.add(Dense(units=10, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='sgd',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5, batch_size=32)
Helpful links
More of Python Keras
- How can I use Python and Keras together?
- How do I use the to_categorical function in Python Keras?
- How can I use the Adam optimizer in TensorFlow?
- What is Python Keras and how is it used?
- How can I use Python and Keras to create an Optical Character Recognition (OCR) example?
- How do I create a neural network using Python and Keras?
- How do I use a Python Keras LSTM for a specific example?
- How do I use the Keras layers.dense function in Python?
- How to load a model in Python Keras?
- How do I use validation_data when creating a Keras model in Python?
See more codes...