python-kerasHow do I normalize data using Python and Keras?
Normalizing data in Python and Keras is a common pre-processing step for machine learning. It is used to scale all values in a given dataset to a range between 0 and 1. This helps to ensure that all features in the dataset are treated equally by the model.
To normalize data using Python and Keras, you can use the MinMaxScaler
class from the sklearn.preprocessing
library.
# example code
from sklearn.preprocessing import MinMaxScaler
# define scaler
scaler = MinMaxScaler()
# fit scaler on data
scaler.fit(data)
# transform data
data_scaled = scaler.transform(data)
# print scaled data
print(data_scaled)
Output example
[[0.1 0.5 0.3]
[0.7 0.2 0.6]]
The code above does the following:
- Imports the
MinMaxScaler
class from thesklearn.preprocessing
library. - Defines the scaler object.
- Fits the scaler on the data.
- Transforms the data using the scaler.
- Prints the scaled data.
Helpful links
More of Python Keras
- How can I use XGBoost, Python and Keras together to build a machine learning model?
- How do I use zero padding in Python Keras?
- How do I use Python Keras to zip a file?
- How do I use Python Keras to create a Zoom application?
- How do I check which version of Keras I am using in Python?
- How do I use validation_data when creating a Keras model in Python?
- How can I use word2vec and Keras to develop a machine learning model in Python?
- How can I install the python module tensorflow.keras in R?
- How do I use Python's tf.keras.utils.get_file to retrieve a file?
- How do I use Python and Keras to create a tutorial?
See more codes...