python-kerasHow do I use Python and Keras to create a VGG16 model?
Using Python and Keras, you can create a VGG16 model to classify images. To do this, you will need to import the necessary libraries, define the model layers, and compile the model.
Example code
from keras.applications import VGG16
# load model
model = VGG16(include_top=True, weights='imagenet')
# freeze all layers
for layer in model.layers:
layer.trainable = False
# compile model
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
The code above imports the VGG16 model from the Keras applications library, loads the model with the ImageNet weights, and freezes all of the layers. It then compiles the model using the RMSprop optimizer and categorical cross entropy loss function.
Code explanation
from keras.applications import VGG16
: imports the VGG16 model from the Keras applications library.model = VGG16(include_top=True, weights='imagenet')
: loads the VGG16 model with the ImageNet weights.for layer in model.layers: layer.trainable = False
: freezes all of the layers in the model.model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
: compiles the model using the RMSprop optimizer and categorical cross entropy loss function.
Helpful links
More of Python Keras
- How do I use validation_data when creating a Keras model in Python?
- How do I use Python Keras to zip a file?
- How do I check which version of Keras I am using in Python?
- How do I use Python's tf.keras.utils.get_file to retrieve a file?
- How can I use Python Keras to create a neural network with zero hidden layers?
- How can I resolve the issue of Python module Tensorflow.keras not being found?
- How can I use Python and Keras together?
- How to load a model in Python Keras?
- How do I use keras.utils.to_categorical in Python?
- How do I save weights in a Python Keras model?
See more codes...