python-kerasHow do I use Python and Keras to create a VGG16 model?
Using Python and Keras, you can create a VGG16 model to classify images. To do this, you will need to import the necessary libraries, define the model layers, and compile the model.
Example code
from keras.applications import VGG16
# load model
model = VGG16(include_top=True, weights='imagenet')
# freeze all layers
for layer in model.layers:
layer.trainable = False
# compile model
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
The code above imports the VGG16 model from the Keras applications library, loads the model with the ImageNet weights, and freezes all of the layers. It then compiles the model using the RMSprop optimizer and categorical cross entropy loss function.
Code explanation
from keras.applications import VGG16: imports the VGG16 model from the Keras applications library.model = VGG16(include_top=True, weights='imagenet'): loads the VGG16 model with the ImageNet weights.for layer in model.layers: layer.trainable = False: freezes all of the layers in the model.model.compile(optimizer='rmsprop', loss='categorical_crossentropy'): compiles the model using the RMSprop optimizer and categorical cross entropy loss function.
Helpful links
More of Python Keras
- How can I use Python with Keras to build a deep learning model?
- How can I improve the validation accuracy of my Keras model using Python?
- How do I use Python Keras to zip a file?
- How do I install Keras on Windows using Python?
- How can I use Python Keras on Windows?
- How do I use validation_data when creating a Keras model in Python?
- How can I use the to_categorical attribute in the tensorflow.python.keras.utils module?
- How can I install the python module tensorflow.keras in R?
- How can I enable verbose mode when using Python Keras?
See more codes...