python-kerasHow do I use Python and Keras to create a VGG16 model?
Using Python and Keras, you can create a VGG16 model to classify images. To do this, you will need to import the necessary libraries, define the model layers, and compile the model.
Example code
from keras.applications import VGG16
# load model
model = VGG16(include_top=True, weights='imagenet')
# freeze all layers
for layer in model.layers:
layer.trainable = False
# compile model
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
The code above imports the VGG16 model from the Keras applications library, loads the model with the ImageNet weights, and freezes all of the layers. It then compiles the model using the RMSprop optimizer and categorical cross entropy loss function.
Code explanation
from keras.applications import VGG16
: imports the VGG16 model from the Keras applications library.model = VGG16(include_top=True, weights='imagenet')
: loads the VGG16 model with the ImageNet weights.for layer in model.layers: layer.trainable = False
: freezes all of the layers in the model.model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
: compiles the model using the RMSprop optimizer and categorical cross entropy loss function.
Helpful links
More of Python Keras
- How do I use Python Keras to zip a file?
- How can I use YOLO with Python and Keras?
- How can I use XGBoost, Python and Keras together to build a machine learning model?
- How can I use word2vec and Keras to develop a machine learning model in Python?
- How do I use a webcam with Python and Keras?
- How can I use the Adam optimizer in TensorFlow?
- How do I use zero padding in Python Keras?
- How can I install the python module tensorflow.keras in R?
- How do I use Python Keras to create a Zoom application?
See more codes...