python-kerasHow do I use the Keras Dense Activation function in Python?
The Keras Dense Activation function is a powerful tool for building neural networks in Python. It is a layer that takes the input from the previous layer and applies an activation function to it.
The syntax for using the Keras Dense Activation function is as follows:
from keras.layers import Dense
# Create a layer
layer = Dense(units=64, activation='relu')
The units
parameter specifies the number of neurons in the layer, and the activation
parameter specifies the activation function to be applied to the output of the layer. In the example above, the activation function is relu
.
Code explanation
from keras.layers import Dense
: This imports theDense
layer class from the Keras library.layer = Dense(units=64, activation='relu')
: This creates aDense
layer with 64 neurons and arelu
activation function applied to the output.
Helpful links
More of Python Keras
- How do I use zero padding in Python Keras?
- How do I use validation_data when creating a Keras model in Python?
- How do I check which version of Keras I am using in Python?
- How do I use Python Keras to perform Optical Character Recognition (OCR)?
- How do I use Python's tf.keras.utils.get_file to retrieve a file?
- How do I use Python Keras to zip a file?
- How can I use word2vec and Keras to develop a machine learning model in Python?
- How can I use XGBoost, Python and Keras together to build a machine learning model?
- How can I improve the validation accuracy of my Keras model using Python?
- How can I enable verbose mode when using Python Keras?
See more codes...