9951 explained code solutions for 126 technologies


python-pytorchHow can I use a Python PyTorch autoencoder to create a data compression model?


A Python PyTorch autoencoder can be used to create a data compression model by learning to reconstruct data with fewer bits than the original input. An example of this code is as follows:

import torch
import torch.nn as nn

class Autoencoder(nn.Module):
    def __init__(self):
        super(Autoencoder, self).__init__()
        self.encoder = nn.Sequential(
            nn.Linear(28 * 28, 128),
            nn.ReLU(True),
            nn.Linear(128, 64),
            nn.ReLU(True), nn.Linear(64, 12), nn.ReLU(True), nn.Linear(12, 3))
        self.decoder = nn.Sequential(
            nn.Linear(3, 12),
            nn.ReLU(True),
            nn.Linear(12, 64),
            nn.ReLU(True),
            nn.Linear(64, 128),
            nn.ReLU(True), nn.Linear(128, 28 * 28), nn.Tanh())

def forward(self, x):
    x = self.encoder(x)
    x = self.decoder(x)
    return x

model = Autoencoder()

Code explanation

  1. import torch: This imports the PyTorch library.
  2. import torch.nn as nn: This imports the neural network library from PyTorch.
  3. class Autoencoder(nn.Module):: This creates a class for the autoencoder model.
  4. def __init__(self):: This is the initialization method for the autoencoder model.
  5. self.encoder = nn.Sequential(: This creates the encoder part of the autoencoder model.
  6. nn.Linear(28 * 28, 128),: This creates a linear layer with 28x28 input and 128 output neurons.
  7. nn.ReLU(True),: This creates a ReLU activation layer.
  8. self.decoder = nn.Sequential(: This creates the decoder part of the autoencoder model.
  9. nn.Linear(3, 12),: This creates a linear layer with 3 input and 12 output neurons.
  10. nn.ReLU(True),: This creates a ReLU activation layer.
  11. def forward(self, x):: This is the forward propagation method for the autoencoder model.
  12. model = Autoencoder(): This creates the autoencoder model.

Helpful links

Edit this code on GitHub