python-pytorchHow can I use Python and EfficientNet PyTorch to create a deep learning model?
You can use Python and EfficientNet PyTorch to create a deep learning model by following these steps:
- Install the EfficientNet PyTorch library:
pip install efficientnet-pytorch
- Import the necessary modules:
import torch
from efficientnet_pytorch import EfficientNet
- Create the model:
model = EfficientNet.from_pretrained('efficientnet-b0')
- Define the loss function and optimizer:
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters())
- Train the model:
model.train()
for data, target in train_loader:
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
- Test the model:
model.eval()
with torch.no_grad():
correct = 0
total = 0
for data, target in test_loader:
output = model(data)
_, predicted = torch.max(output.data, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
accuracy = 100 * correct / total
print('Accuracy of the network on the test images: %d %%' % accuracy)
- Save the model:
torch.save(model.state_dict(), 'model.pth')
Helpful links
More of Python Pytorch
- How can I use Python, PyTorch, and YOLOv5 to build an object detection model?
- How do I use Pytorch with Python 3.11 on Windows?
- How can I use Python and PyTorch to create a Zoom application?
- How can I use Python and PyTorch to parse XML files?
- How can I use Yolov5 with PyTorch?
- What is the most compatible version of Python to use with PyTorch?
- How can I compare Python PyTorch and Torch for software development?
- How do I update PyTorch using Python?
- How do I check the version of Python and PyTorch I am using?
- How do I save a PyTorch tensor to a file using Python?
See more codes...