python-pytorchHow can I use Python and PyTorch to implement multiprocessing?
Python and PyTorch can be used to implement multiprocessing by using the torch.multiprocessing module.
Example code
import torch
import torch.multiprocessing as mp
def cube(x):
return x**3
if __name__ == '__main__':
pool = mp.Pool(processes=4)
results = [pool.apply(cube, args=(x,)) for x in range(1,7)]
print(results)
Output example
[1, 8, 27, 64, 125, 216]
Code explanation
import torch: imports the PyTorch library.import torch.multiprocessing as mp: imports the multiprocessing module from PyTorch.def cube(x):: defines a function that cubes a number.pool = mp.Pool(processes=4): creates a pool of 4 processes.results = [pool.apply(cube, args=(x,)) for x in range(1,7)]: applies the cube function to each item in the range 1 to 7 using the 4 processes in the pool.print(results): prints the results of the cube function applied to each item in the range.
Helpful links
More of Python Pytorch
- How can I use Yolov5 with PyTorch?
- How can I use Python, PyTorch, and YOLOv5 to build an object detection model?
- How can I use Python and PyTorch to parse XML files?
- How do I use PyTorch with Python version 3.11?
- How can I use Python and PyTorch to create a Zoom application?
- How do I use Pytorch with Python 3.11 on Windows?
- How do I install PyTorch on a Windows computer?
- How can I use Python PyTorch with CUDA?
- How do I update PyTorch using Python?
- How can I use Python PyTorch without a GPU?
See more codes...