python-scipyHow can I use the SciPy SVD function in Python?
The SciPy SVD function allows you to decompose a matrix into its constituent parts using Singular Value Decomposition (SVD).
To use the SciPy SVD function in Python, you simply need to import the scipy.linalg module and call the svd function. For example:
import numpy as np
from scipy.linalg import svd
A = np.array([[1,2],[3,4],[5,6]])
U, s, VT = svd(A)
print(U)
print(s)
print(VT)
Output example
[[-0.2298477 0.88346102 0.40824829]
[-0.52474482 0.24078249 -0.81649658]
[-0.81964194 -0.40189603 0.40824829]]
[9.52551809 0.51430058]
[[-0.61962948 -0.78489445]
[-0.78489445 0.61962948]]
The code consists of the following parts:
- Import the
scipy.linalgmodule:import numpy as npandfrom scipy.linalg import svd. - Create a matrix
A:A = np.array([[1,2],[3,4],[5,6]]). - Call the
svdfunction:U, s, VT = svd(A). - Print the results:
print(U),print(s), andprint(VT).
For more information about the SciPy SVD function, see the SciPy documentation.
More of Python Scipy
- How can I use Python and Numpy to parse XML data?
- How do I use Scipy zeros in Python?
- How do I upgrade my Python Scipy package?
- How can I use Python and SciPy to perform a Short-Time Fourier Transform?
- How do I create a 2D array of zeros using Python and NumPy?
- How do I create a zero matrix using Python and Numpy?
- How can I use the x.shape function in Python Numpy?
- How do I use Python and SciPy to create a tutorial PDF?
- How can I use RK45 with Python and SciPy?
- How can I use Python Numpy to select elements from an array based on multiple conditions?
See more codes...