python-scipyHow can I use the SciPy SVD function in Python?
The SciPy SVD function allows you to decompose a matrix into its constituent parts using Singular Value Decomposition (SVD).
To use the SciPy SVD function in Python, you simply need to import the scipy.linalg
module and call the svd
function. For example:
import numpy as np
from scipy.linalg import svd
A = np.array([[1,2],[3,4],[5,6]])
U, s, VT = svd(A)
print(U)
print(s)
print(VT)
Output example
[[-0.2298477 0.88346102 0.40824829]
[-0.52474482 0.24078249 -0.81649658]
[-0.81964194 -0.40189603 0.40824829]]
[9.52551809 0.51430058]
[[-0.61962948 -0.78489445]
[-0.78489445 0.61962948]]
The code consists of the following parts:
- Import the
scipy.linalg
module:import numpy as np
andfrom scipy.linalg import svd
. - Create a matrix
A
:A = np.array([[1,2],[3,4],[5,6]])
. - Call the
svd
function:U, s, VT = svd(A)
. - Print the results:
print(U)
,print(s)
, andprint(VT)
.
For more information about the SciPy SVD function, see the SciPy documentation.
More of Python Scipy
- How can I use Python Scipy to zoom in on an image?
- How can I use Python and SciPy to find the zeros of a function?
- How do I use Python Numpy to read and write Excel (.xlsx) files?
- How do I create a 2D array of zeros using Python and NumPy?
- How do I use Python and SciPy to write a WAV file?
- How do I create a zero matrix using Python and Numpy?
- How can I check if a certain version of Python is compatible with SciPy?
- How can I use Python and Numpy to zip files?
- How can I use Python Numpy to select elements from an array based on multiple conditions?
- How do I uninstall Python Scipy?
See more codes...