python-scipyHow can I use the SciPy SVD function in Python?
The SciPy SVD function allows you to decompose a matrix into its constituent parts using Singular Value Decomposition (SVD).
To use the SciPy SVD function in Python, you simply need to import the scipy.linalg
module and call the svd
function. For example:
import numpy as np
from scipy.linalg import svd
A = np.array([[1,2],[3,4],[5,6]])
U, s, VT = svd(A)
print(U)
print(s)
print(VT)
Output example
[[-0.2298477 0.88346102 0.40824829]
[-0.52474482 0.24078249 -0.81649658]
[-0.81964194 -0.40189603 0.40824829]]
[9.52551809 0.51430058]
[[-0.61962948 -0.78489445]
[-0.78489445 0.61962948]]
The code consists of the following parts:
- Import the
scipy.linalg
module:import numpy as np
andfrom scipy.linalg import svd
. - Create a matrix
A
:A = np.array([[1,2],[3,4],[5,6]])
. - Call the
svd
function:U, s, VT = svd(A)
. - Print the results:
print(U)
,print(s)
, andprint(VT)
.
For more information about the SciPy SVD function, see the SciPy documentation.
More of Python Scipy
- How can I check if a certain version of Python is compatible with SciPy?
- How do I rotate an image using Python and SciPy?
- How do I create an array of zeros with the same shape as an existing array using Python and NumPy?
- How do I integrate Scipy with Python?
- How do I use Scipy zeros in Python?
- How do I use Python Scipy to perform a Z test?
- How do I check the version of Python SciPy I'm using?
- How do I use the numpy vstack function in Python?
- How can I use python scipy to calculate the norm of a vector?
- How do I calculate a Jacobian matrix using Python and NumPy?
See more codes...