python-scipyHow can I use the SciPy SVD function in Python?
The SciPy SVD function allows you to decompose a matrix into its constituent parts using Singular Value Decomposition (SVD).
To use the SciPy SVD function in Python, you simply need to import the scipy.linalg
module and call the svd
function. For example:
import numpy as np
from scipy.linalg import svd
A = np.array([[1,2],[3,4],[5,6]])
U, s, VT = svd(A)
print(U)
print(s)
print(VT)
Output example
[[-0.2298477 0.88346102 0.40824829]
[-0.52474482 0.24078249 -0.81649658]
[-0.81964194 -0.40189603 0.40824829]]
[9.52551809 0.51430058]
[[-0.61962948 -0.78489445]
[-0.78489445 0.61962948]]
The code consists of the following parts:
- Import the
scipy.linalg
module:import numpy as np
andfrom scipy.linalg import svd
. - Create a matrix
A
:A = np.array([[1,2],[3,4],[5,6]])
. - Call the
svd
function:U, s, VT = svd(A)
. - Print the results:
print(U)
,print(s)
, andprint(VT)
.
For more information about the SciPy SVD function, see the SciPy documentation.
More of Python Scipy
- How do I create a 2D array of zeros using Python and NumPy?
- How do I create a numpy array of zeros using Python?
- How do I use scipy.optimize.curve_fit in Python?
- How can I use Python and SciPy to find the zeros of a function?
- How to use Python, XML-RPC, and NumPy together?
- How can I use Python and Numpy to zip files?
- How do I use Python XlsxWriter to write a NumPy array to an Excel file?
- How can I use Python Scipy to zoom in on an image?
- How do I use Python Scipy to perform a Z test?
- How can I use Python and Numpy to parse XML data?
See more codes...