python-scipyHow can I use the SciPy SVD function in Python?
The SciPy SVD function allows you to decompose a matrix into its constituent parts using Singular Value Decomposition (SVD).
To use the SciPy SVD function in Python, you simply need to import the scipy.linalg module and call the svd function. For example:
import numpy as np
from scipy.linalg import svd
A = np.array([[1,2],[3,4],[5,6]])
U, s, VT = svd(A)
print(U)
print(s)
print(VT)
Output example
[[-0.2298477 0.88346102 0.40824829]
[-0.52474482 0.24078249 -0.81649658]
[-0.81964194 -0.40189603 0.40824829]]
[9.52551809 0.51430058]
[[-0.61962948 -0.78489445]
[-0.78489445 0.61962948]]
The code consists of the following parts:
- Import the
scipy.linalgmodule:import numpy as npandfrom scipy.linalg import svd. - Create a matrix
A:A = np.array([[1,2],[3,4],[5,6]]). - Call the
svdfunction:U, s, VT = svd(A). - Print the results:
print(U),print(s), andprint(VT).
For more information about the SciPy SVD function, see the SciPy documentation.
More of Python Scipy
- How do I use Python Numpy to read and write Excel (.xlsx) files?
- How do I create a 2D array of zeros using Python and NumPy?
- How can I use Python Numpy to select elements from an array based on multiple conditions?
- How do I use Python XlsxWriter to write a NumPy array to an Excel file?
- How do I upgrade my Python Scipy package?
- How can I use Python and SciPy to read and write WAV files?
- How do I use the trapz function in Python SciPy?
- How do I rotate an image using Python and SciPy?
- How do I use Python Scipy's Odeint function?
- How do I install SciPy for Python?
See more codes...