9951 explained code solutions for 126 technologies


tesseract-ocrHow can I implement best practices for using Tesseract OCR?


  1. Install Tesseract: Install the latest version of Tesseract OCR library from here.

  2. Pre-Processing: Pre-process the image before passing it to Tesseract to improve OCR accuracy. This can be done using techniques like thresholding, blurring, noise removal, etc.

  3. Set Tesseract Parameters: Set Tesseract parameters like language, page segmentation mode, and OCR engine mode. This can be done using the tesseract_set_parameters() function.

  4. Run Tesseract: Use the tesseract_run() function to run the Tesseract OCR on the input image.

  5. Post-Processing: Post-process the output of Tesseract OCR to improve accuracy and readability. This can be done using techniques like spell checking, grammar correction, etc.

  6. Evaluate Results: Evaluate the results of the Tesseract OCR using metrics like precision, recall, accuracy, etc.

  7. Example Code:

# Load image
image = cv2.imread('image.jpg')

# Pre-Processing
processed_image = pre_process_image(image)

# Set Tesseract Parameters
tesseract_set_parameters(language='eng', page_segmentation_mode='auto', ocr_engine_mode='default')

# Run Tesseract
text = tesseract_run(processed_image)

# Post-Processing
post_processed_text = post_process_text(text)

# Evaluate Results
evaluate_results(post_processed_text)

Code explanation

**

  • cv2.imread('image.jpg'): Loads the image from file.
  • pre_process_image(image): Pre-processes the image to improve OCR accuracy.
  • tesseract_set_parameters(language='eng', page_segmentation_mode='auto', ocr_engine_mode='default'): Sets the Tesseract parameters.
  • tesseract_run(processed_image): Runs the Tesseract OCR on the input image.
  • post_process_text(text): Post-processes the output of Tesseract OCR to improve accuracy and readability.
  • evaluate_results(post_processed_text): Evaluates the results of the Tesseract OCR.

## Helpful links

Edit this code on GitHub