9951 explained code solutions for 126 technologies


python-kerasHow do I use dropout in Python Keras?


Dropout is a regularization technique used to reduce overfitting in neural networks. To use dropout in Python Keras, add a Dropout layer to the model after each layer that you want to regularize. For example:

from keras.layers import Dropout

model = Sequential()
model.add(Dense(64, activation='relu', input_dim=64))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))

The Dropout layer takes a rate parameter which is a float between 0 and 1, representing the fraction of the input units to drop. This example drops 50% of the input units for each of the two Dense layers.

The following list explains the different parts of the code:

  • from keras.layers import Dropout: Imports the Dropout layer from the Keras library.
  • model = Sequential(): Creates a Sequential model object.
  • model.add(Dense(64, activation='relu', input_dim=64)): Adds a Dense layer with 64 units, ReLU activation, and 64 input dimensions.
  • model.add(Dropout(0.5)): Adds a Dropout layer with a rate of 0.5.
  • model.add(Dense(64, activation='relu')): Adds a Dense layer with 64 units and ReLU activation.
  • model.add(Dropout(0.5)): Adds a Dropout layer with a rate of 0.5.
  • model.add(Dense(10, activation='softmax')): Adds a Dense layer with 10 units and softmax activation.

For more information on using dropout in Python Keras, check out the Keras documentation and the Keras blog post on dropout.

Edit this code on GitHub