9951 explained code solutions for 126 technologies


python-pytorchHow can I use Python and PyTorch to develop a project on Habr?


Python and PyTorch are powerful tools for developing projects on Habr. To get started, you will need to install PyTorch and set up a development environment. Once you have the necessary tools installed, you can begin building your project.

To demonstrate, here is an example of a simple project that uses Python and PyTorch to classify images of cats and dogs:

import torch
import torchvision
import torchvision.transforms as transforms

transform = transforms.Compose([transforms.ToTensor(),
                                transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=2)

classes = ('cat', 'dog')

# define a convolutional neural network
import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 2)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

net = Net()

# define a loss function and optimizer
import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

# train the network
for epoch in range(2):  # loop over the dataset multiple times

    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # get the inputs; data is a list of [inputs, labels]
        inputs, labels = data

        # zero the parameter gradients
        optimizer.zero_grad()

        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        # print statistics
        running_loss += loss.item()
        if i % 2000 == 1999:    # print every 2000 mini-batches
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')

The code performs the following steps:

  1. Load and transform the data: The CIFAR10 dataset is loaded and transformed using the transforms module from torchvision.
  2. Define a convolutional neural network: A convolutional neural network is defined using the nn and functional modules from torch.
  3. Define a loss function and optimizer: The CrossEntropyLoss function is used as the loss function and the SGD optimizer is used to update the network parameters.
  4. Train the network: The network is trained using the enumerate function and the backward and step functions from torch.

Once the network is trained, it can be used to classify images of cats and dogs on Habr.

Helpful links

Edit this code on GitHub