python-pytorchHow can I use Python and PyTorch to develop a project on Habr?
Python and PyTorch are powerful tools for developing projects on Habr. To get started, you will need to install PyTorch and set up a development environment. Once you have the necessary tools installed, you can begin building your project.
To demonstrate, here is an example of a simple project that uses Python and PyTorch to classify images of cats and dogs:
import torch
import torchvision
import torchvision.transforms as transforms
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
classes = ('cat', 'dog')
# define a convolutional neural network
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 2)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
# define a loss function and optimizer
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# train the network
for epoch in range(2): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
The code performs the following steps:
- Load and transform the data: The CIFAR10 dataset is loaded and transformed using the
transforms
module fromtorchvision
. - Define a convolutional neural network: A convolutional neural network is defined using the
nn
andfunctional
modules fromtorch
. - Define a loss function and optimizer: The
CrossEntropyLoss
function is used as the loss function and theSGD
optimizer is used to update the network parameters. - Train the network: The network is trained using the
enumerate
function and thebackward
andstep
functions fromtorch
.
Once the network is trained, it can be used to classify images of cats and dogs on Habr.
Helpful links
More of Python Pytorch
- What is the most compatible version of Python to use with PyTorch?
- How do I convert a Python Torch tensor to a float?
- How can I use Python and PyTorch to parse XML files?
- How can I use Numba and PyTorch together for software development?
- How do I use Pytorch with Python 3.11 on Windows?
- How can I use Python PyTorch with CUDA?
- How do I uninstall Python PyTorch?
- How do I save a PyTorch tensor to a file using Python?
- How do I determine the version of Python and PyTorch I'm using?
- How can I use Python PyTorch without CUDA?
See more codes...