python-kerasHow do I use the Adam optimizer with Python Keras?
The Adam optimizer is a popular optimization algorithm for training deep learning models in Python Keras. It is an extension of the stochastic gradient descent algorithm that is based on adaptive estimation of first-order and second-order moments.
To use the Adam optimizer with Python Keras, you first need to import the Adam optimizer class from the Keras library:
from keras.optimizers import Adam
You then need to instantiate the Adam optimizer object with desired parameters such as learning rate, decay rate, and momentum:
opt = Adam(lr=0.001, decay=1e-6, momentum=0.9)
Finally, you need to compile your model with the Adam optimizer object:
model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])
Code explanation
from keras.optimizers import Adam
: This imports the Adam optimizer class from the Keras library.opt = Adam(lr=0.001, decay=1e-6, momentum=0.9)
: This instantiates the Adam optimizer object with the given parameters.model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])
: This compiles the model with the Adam optimizer object.
Helpful links
More of Python Keras
- How do I use zero padding in Python Keras?
- How do I use validation_data when creating a Keras model in Python?
- How do I use Python Keras to zip a file?
- How can I use word2vec and Keras to develop a machine learning model in Python?
- How can I improve the validation accuracy of my Keras model using Python?
- How can I enable verbose mode when using Python Keras?
- How do I save weights in a Python Keras model?
- How do I use Python's tf.keras.utils.get_file to retrieve a file?
- How can I use Python and Keras to create a Variational Autoencoder (VAE)?
- How do I use Python and Keras to create a VGG16 model?
See more codes...